

Thibault Vinchent

Formateur permanent EPSI

thibault.vinchent@campus-cd.com

Toujours à votre disposition pour des compléments de
cours, suivi de projet, demandes diverses.

Formateur en conception d’applications depuis
2015 (écoles d’ingénieur, universités, instituts)

Ingénieur développement depuis 2010 (Sopra,
Toyota, Eurotunnel etc.).

Illustration : Exemples de sites créés…
… et toujours en fonctionnement !

mailto:Thibault.vinchent@campus-cd.com
mailto:Thibault.vinchent@campus-cd.com
mailto:Thibault.vinchent@campus-cd.com

Programme

Les bases de GIT

Utilité de GIT

La ligne de commande

Installation

Les principales commandes (init, commit, push etc.)

Les serveurs GIT : Github, Gitlab, Bitbucket

Le travail en équipe

Le cycle de vie d’un projet

GIT avancé

Les bonnes pratiques (régular ité des commits, pull)

Le fichier readme avec Markdown

Le .gitignore

Github avancé : github.io, clone, pull request, fork, issues

Le merge conficts en pratique dans VSCode

Différence head, origin et main

Les commandes avancées : cherry-pick, reset, revert, rebase, blame etc.

Workflow

Github actions, secrets. .

Bonus : un repo GITHUB stylé

Les bases de GIT
Utilité, installation,
principales commandes..

Contexte historique

Problèmes lors du travail à plusieurs sur un
projet

Solutions basiques : USB, dossier partagé, SVN

Et la solution avec GIT de Linus Torvald

Utilité de GIT

Gère l’historique de toutes les modifications
d’un projet

Facilite les retours en arrière

Assure la détection de modifications effectuées
par plusieurs personnes sur une même portion
de code

Décentralisé pour assurer la sauvegarde de
données

La ligne de commande

Permet de faire tout ce qu’on peut faire sur ordinateur, sans interface graphique

Sous mac

Application « Terminal »

Sous windows

Application « Invite de commande »

Les commandes de base:

cd: « change directory »

ls sous mac, dir sous windows

pwd: present working directory

autres commandes de bases: mkdir, mv, rm, chmod, apt-get

Astuces:

Utiliser la tabulation pour éviter de taper le nom complet des dossiers et fichiers

Utiliser les flèches haut / bas pour dupliquer une commande faite auparavant

Installation

Sous mac : http://mac.github.com

Sous windows : http://git-scm.com/download/win

Git s’utilise avec des commandes qui commencent par « git ».
Exemple : git init

http://mac.github.com/
http://git-scm.com/download/win
http://git-scm.com/download/win
http://git-scm.com/download/win

Les commandes
principales

Et aussi :

Init : initialisation d’un repo git

Merge : fusion de travaux

Et d’autres que l’on verra plus tard

Serveur GIT : Github

Créez votre espace github

https://github.com/

New repository puis suivre les instructions

Autres espaces : gitlab, bitbucket

Attention :

si vous utilisez un ordinateur partagé, il faudra peut-être modifier les
paramètres de compte avec git config user.name et user.email

le push ne fonctionne pas si vous vous êtes placé dans un répertoire
système de Windows

https://github.com/
https://github.com/

Le travail en équipe

Travailler le projet sur un autre ordinateur

Clone du projet : git clone

Résoudre les conflits

Vérifier la différence avec le remote : git status

Vérifier les différences avec le dernier commit :
git diff

Fusionner les différences : git merge

Le cycle de vie
d’un projet GIT

La notion de branche

Les versions et tag

À vous !

https://gitexercises.fracz.com/

https://gitexercises.fracz.com/
https://gitexercises.fracz.com/

GIT avancé
Bonnes pratiques, merge
conflicts, commandes avancées

Quelques bonnes
pratiques

Faire des commits régulièrement (commit atomic) :

Pas uniquement à chaque fonctionnalité* mais à chaque
nouvelle étape fonctionnelle. Exemple : function terminée,
bug mineur corrigé.

Il ne doit pas se passer plus d’une heure sans commit. 1
commit toutes les 15 minutes est une bonne moyenne.

Faire des pull avant de démarrer une nouvelle tâche
(rapatrier la dernière version du projet) :

Au début de chaque journée pour récupérer le travail de
la veille au soir après son départ.

Après chaque push pour resynchroniser son travail.

* une fonctionnalité de moyenne à grande importance aura
en général une branche dédiée.

Le fichier readme
avec Markdown

Le fichier doit se trouver à la racine du repo et
porter le nom « readme.md ».

Il sera dès lors automatiquement mis en avant
sur votre repo github.

Le markdown est un fichier texte avec des
possibilités de mis en forme très simples. En
savoir plus : https://github.com/adam-
p/markdown-here/wiki/Markdown-Cheatsheet

https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

Github avancé

github.io

Si vous créez un repo ayant pour nom “votrecomptegithub.github.io” celui-ci sera automatiquement
access ible à l’adresse https://votrecomptegithub.github.io

Attention, seules les technos front seront actives (HTML, CSS, JS OK), (PHP etc NOK)

Clone

Commande permettant de récupérer une copie d’un projet sur votre machine

Pull request

Pull (transfert) d’une modification sur un projet dont vous n’êtes pas propriétaire.

Fork

Repartir d’un projet existant pour servir de base à un nouveau projet avec le même
objectif mais avec une approche différente.

Sert aussi à importer pour modifier un projet qui ne nous appartient pas (en faisant
ensuite une pull request).

Issues

Utilisé pour lister et assigner les todos, bugs en cours, demande d’amélioration etc.

https://votrecomptegithub.github.io/

Le fichier .gitignore

Fichier de configuration utilisé pour repertorier
les dossiers et fichiers qui seront uniquement
sur le working directory, et donc exclu du
remote

La résolution de
conflits

Rappel :

Status

Diff

Merge

Différences HEAD,
ORIGIN, MAIN,
MASTER

HEAD

Désigne l’endroit où l’on se situe dans l’arborescence de
branche.

ORIGIN

Désigne le nom par defaut du repo distant (remote)

MAIN

Désigne la branche principale, en général utilisé pour les
release principales. Cf schéma

Le nom « MASTER » est parfois utilisé à la place de
MAIN pour désigner la branche principale.

Les commandes
avancées

Cherry-pick : importer des éléments d’une autre branche
dans la banche courante

Reset : annuler les changements pour se positionner à un
endroit donné de l’arborescence git

Rebase : modifier l’historique des commits pour placer sa
base à un autre endroit

Revert : inverse les modifications des commit spécifiés, ce
qui permet de garder une trace (contrairement à reset)

Blame : permet de mettre en évidence qui a développé les
lignes de code

Stash apply / pop : conserve en mémoire le travail en cours
pour y revenir plus tard (avec stash pop – pour supp ou
apply – pour garder)

Rebase

Workflow

2 types de workflow principaux :

Trunk based : tout est sur le main, pas d’autres branches. Rapide
mais très exigeant. Demande beaucoup de rigueur comme la nécessité
de faire des commit atomic). Peut bloquer la phase de test.

Gitflow : moins exigeant et moins risqué mais plus long à maintenir.

Commencer donc par le gitflow..

Github actions,
secrets..

Github actions (CI/CD)

Fichier .yml qui doivent se trouver dans le dossier
.github/workflows

S’execute à chaque nouveau push

Utile pour mettre en place un pipeline automatisé. Exemple :
lorsque je push mes modifications, le projet exécute
automatiquement les tests et si les tests réussissent, les poussent
sur le serveur de recette.

Secrets

Dans Settings / Secrets and variables

Pratique pour stocker des variables d’environnements

Qui sont uti le sur le remote

Mais qui ne doivent pas être visible du public

Exemple : le mot de passe du serveur de FTP utilisé pour la mise en ligne

Bonus

Un repo stylé avec https://gprm.itsvg.in/

Génère un fichier readme.md à déposer dans le repo
« nomDeProfilGithub »

https://gprm.itsvg.in/

À vous !

https://learngitbranching.js.org/?locale=fr_FR

https://learngitbranching.js.org/?locale=fr_FR
https://learngitbranching.js.org/?locale=fr_FR

MAJ 2026

Éviter checkout qui est déprécié et lui préférer switch (changement et
création de branche) ou restore

Convention de nommage des branches largement adoptée :

main : production

develop : intégration

feature/xxx

fix/xxx

Hotfix/xxx

Pull requests obligatoires : Jamais de push direct sur main: Revue de
code, Tests automatiques, Historique maîtrisé

CI systématique : Chaque push déclenche : Tests, Lint, Build

Versionner les livraisons :

git tag v1.2.0

git push --tags

	Diapositive 1
	Diapositive 2 Thibault Vinchent
	Diapositive 3 Programme
	Diapositive 4 Les bases de GIT
	Diapositive 5 Contexte historique
	Diapositive 6 Utilité de GIT
	Diapositive 7 La ligne de commande
	Diapositive 8 Installation
	Diapositive 9 Les commandes principales
	Diapositive 10 Serveur GIT : Github
	Diapositive 11 Le travail en équipe
	Diapositive 12 Le cycle de vie d’un projet GIT
	Diapositive 13 À vous !
	Diapositive 14 GIT avancé
	Diapositive 15 Quelques bonnes pratiques
	Diapositive 16 Le fichier readme avec Markdown
	Diapositive 17 Github avancé
	Diapositive 18 Le fichier .gitignore
	Diapositive 19 La résolution de conflits
	Diapositive 20 Différences HEAD, ORIGIN, MAIN, MASTER
	Diapositive 21 Les commandes avancées
	Diapositive 22 Workflow
	Diapositive 23 Github actions, secrets..
	Diapositive 24 Bonus
	Diapositive 25 À vous !
	Diapositive 26 MAJ 2026

